出国留学网

目录

托福阅读背景知识:眼睛的起源

字典 |

2014-07-02 17:41

|

【 liuxue86.com - 托福阅读 】

  在2014年6月29日的托福阅读考试中有这样一道题:眼睛的起源。出国留学网(www.liuxue86.com)小编提醒大家:该文属于起源类别文章,通过考古证据提出理论,在TPO里类似的文章非常多,自然科学类和社会科学类均涉及,在理解时重点关注不同的证据支持的观点,以及后续证据对前观点的支持或反驳。

  托福阅读真题再现:

  版本一:关于眼睛的起源

  版本二:第一篇眼睛起源 不是来自多细胞动物 早起软体动物化石提供证据

  版本三:讲生物眼睛的构造和进化什么的

  解析:本文关注眼睛的起源,重复的是2012年8月19日阅读。该文属于起源类别文章,通过考古证据提出理论,在TPO里类似的文章非常多,自然科学类和社会科学类均涉及,在理解时重点关注不同的证据支持的观点,以及后续证据对前观点的支持或反驳。

  托福阅读背景知识:眼睛的起源

  The common origin (monophyly) of all animal eyes is now widely accepted as fact. This is based upon the shared genetic features of all eyes; that is, all modern eyes, varied as they are, have their origins in a proto-eye believed to have evolved some 540 million years ago, and the PAX6 gene is considered a key factor in this. The majority of the advancements in early eyes are believed to have taken only a few million years to develop, since the first predator to gain true imaging would have touched off an "arms race" among all species that did not flee the photopic environment. Prey animals and competing predators alike would be at a distinct disadvantage without such capabilities and would be less likely to survive and reproduce. Hence multiple eye types and subtypes developed in parallel (except those of groups, such as the vertebrates, that were only forced into the photopic environment at a late stage).

  Eyes in various animals show adaptation to their requirements. For example, birds of prey have much greater visual acuity than humans, and some can detect ultraviolet radiation. The different forms of eye in, for example, vertebrates and molluscs are examples of parallel evolution, despite their distant common ancestry. Phenotypic convergence of the geometry of cephalopod and most vertebrate eyes creates the impression that the vertebrate eye evolved from an imaging cephalopod eye, but this is not the case, as the reversed roles of their respective ciliary and rhabdomeric opsin classes and different lens crystallins show.

  The very earliest "eyes", called eyespots, were simple patches of photoreceptor protein in unicellular animals. In multicellular beings, multicellular eyespots evolved, physically similar to the receptor patches for taste and smell. These eyespots could only sense ambient brightness: they could distinguish light and dark, but not the direction of the light source.

  Through gradual change, the eyespots of species living in well-lit environments depressed into a shallow "cup" shape, the ability to slightly discriminate directional brightness was achieved by using the angle at which the light hit certain cells to identify the source. The pit deepened over time, the opening diminished in size, and the number of photoreceptor cells increased, forming an effective pinhole camera that was capable of dimly distinguishing shapes. However, the ancestors of modern hagfish, thought to be the protovertebrate were evidently pushed to very deep, dark waters, where they were less vulnerable to sighted predators, and where it is advantageous to have a convex eye-spot, which gathers more light than a flat or concave one. This would have led to a somewhat different evolutionary trajectory for the vertebrate eye than for other animal eyes.

  The thin overgrowth of transparent cells over the eye's aperture, originally formed to prevent damage to the eyespot, allowed the segregated contents of the eye chamber to specialise into a transparent humour that optimised colour filtering, blocked harmful radiation, improved the eye's refractive index, and allowed functionality outside of water. The transparent protective cells eventually split into two layers, with circulatory fluid in between that allowed wider viewing angles and greater imaging resolution, and the thickness of the transparent layer gradually increased, in most species with the transparent crystallin protein.

  The gap between tissue layers naturally formed a bioconvex shape, an optimally ideal structure for a normal refractive index. Independently, a transparent layer and a nontransparent layer split forward from the lens: the cornea and iris. Separation of the forward layer again formed a humour, the aqueous humour. This increased refractive power and again eased circulatory problems. Formation of a nontransparent ring allowed more blood vessels, more circulation, and larger eye sizes.

  >>>点击进入托福频道了解更多信息

  推荐阅读:

  托福考试全面攻略

  2014新托福报名费用

  想了解更多托福阅读网的资讯,请访问: 托福阅读

本文来源:https://toefl.liuxue86.com/t/2274442.html
延伸阅读
托福阅读文章都比较长,所以在安排时间的时候需要有更多的考虑,那么接下来就和出国留学网来看看托福阅读时间安排及速度提高技巧。时间安排首先介绍下托福阅读时间安排,阅读考试总时长60分钟
2020-07-06
对于托福阅读,备考的考生对此有哪些了解呢?需要分内容和板块进行准备。接下来就和出国留学网一起来看看2020年托福阅读备考指导。备考方法单词:想要做好托福阅读,背托福单词是最基础的。
2020-06-16
因为考试时间有限,托福阅读速度提升是考生要考虑的问题之一,如何提升托福阅读速度呢?需要考托福的同学和出国留学网小编一起来看看托福阅读考试速度怎么训练?考试速度1.多做真题,模拟训练
2020-06-06
托福阅读题型以及算分详解,希望这篇文章对于大家在进行托福阅读备考的时候有帮助,下面就好出国留学网一起来看看托福阅读考试有哪些常考题型?2020年托福阅读考试需要完成3篇文章,每篇文
2020-05-27
对于托福阅读,想获得高分,那么了解一些做题技巧是免不了的,接下来就和出国留学网的小编来了解一下2020年托福阅读考试满分答题技巧分享。做题的误区考生做旧托福考试(TOEFL)阅读或
2020-05-27
因为考试时间有限,托福阅读速度提升是考生要考虑的问题之一,如何提升托福阅读速度呢?需要考托福的同学和出国留学网小编一起来看看如何提升托福阅读考试的速度?一、多做真题,模拟训练许多同
2019-03-09
阅读不仅在英语考试中是重点,在中文考试中同样占比很重。其实阅读在我们生活中无处不在。但是托福阅读好像要难上些许,我们出国留学网给大家分析了一些托福阅读考点,来跟我们看看吧。一、例证
2019-06-10
在托福阅读时,审题在考试中是非常重要的,而且还需要合理的安排好时间。那么接下来就和出国留学网一起来看看托福阅读考试如何进行审题?审题方法细节题推断题修辞目的题如何审题技巧对于托福阅
2020-03-11
对于托福考试来说,相信很多同学都会了解托福词汇的重要性,那么接下来就和出国留学网来看看托福阅读中有哪些常见的学术词汇?首先应该相信,作为世界范围内英语最为权威的考试之一,ETS将学
2020-01-21
托福阅读如此重要,很多人不知道怎么分配时间,那么托福阅读时间该怎么分配呢?想必是不少出国人士比较关心的问题,和出国留学网一起来看看怎样分配托福阅读时间?1.单篇阅读文章定格20分钟
2019-05-30