出国留学网

目录

托福阅读素材之地下水

字典 |

2017-10-09 19:59

|

【 liuxue86.com - 托福阅读 】

  托福阅读考试其实相当一部分会考察学生的涉猎。积累一定的文化和百科素材很重要,那么出国留学网托福栏目小编为您整理了相关资讯,下面是关于地下水的介绍,欢迎阅读!更多信息请浏览托福栏目。

  地下水的相关介绍

  TPO-1-1:Groundwater

  Groundwater is the word used to describe water that saturates the ground, filling all the available spaces. By far the most abundant type of groundwater is meteoric water; this is the groundwater that circulates as part of the water cycle. Ordinary meteoric water is water that has soaked into the ground from the surface, from precipitation (rain and snow) and from lakes and streams. There it remains, sometimes for long periods, before emerging at the surface again. At first thought it seems incredible that there can be enough space in the “solid”ground underfoot to hold all this water.

  The necessary space is there, however, in many forms. The commonest spaces are those among the particles—sand grains and tiny pebbles—of loose, unconsolidated sand and gravel. Beds of this material, out of sight beneath the soil, are common. They are found wherever fast rivers carrying loads of coarse sediment once flowed. For example, as the great ice sheets that covered North America during the last ice age steadily melted away, huge volumes of water flowed from them. The water was always laden with pebbles, gravel, and sand, known as glacial outwash, that was deposited as the flow slowed down.

  The same thing happens to this day, though on a smaller scale, wherever a sediment-laden river or stream emerges from a mountain valley onto relatively flat land, dropping its load as the current slows: the water usually spreads out fanwise, depositing the sediment in the form of a smooth, fan-shaped slope. Sediments are also dropped where a river slows on entering a lake or the sea, the deposited sediments are on a lake floor or the seafloor at first, but will be located inland at some future date, when the sea level falls or the land rises; such beds are sometimes thousands of meters thick.

  In lowland country almost any spot on the ground may overlie what was once the bed of a river that has since become buried by soil; if they are now below the water’s upper surface (the water table), the gravels and sands of the former riverbed, and its sandbars, will be saturated with groundwater.

  So much for unconsolidated sediments. Consolidated (or cemented) sediments, too, contain millions of minute water-holding pores. This is because the gaps among the original grains are often not totally plugged with cementing chemicals; also, parts of the original grains may become dissolved by percolating groundwater, either while consolidation is taking place or at any time afterwards. The result is that sandstone, for example, can be as porous as the loose sand from which it was formed.

  Thus a proportion of the total volume of any sediment, loose or cemented, consists of empty space. Most crystalline rocks are much more solid; a common exception is basalt, a form of solidified volcanic lava, which is sometimes full of tiny bubbles that make it very porous.

  The proportion of empty space in a rock is known as its porosity. But note that porosity is not the same as permeability, which measures the ease with which water can flow through a material; this depends on the sizes of the individual cavities and the crevices linking them.

  Much of the water in a sample of water-saturated sediment or rock will drain from it if the sample is put in a suitable dry place. But some will remain, clinging to all solid surfaces. It is held there by the force of surface tension without which water would drain instantly from any wet surface, leaving it totally dry. The total volume of water in the saturated sample must therefore be thought of as consisting of water that can, and water that cannot, drain away.

  The relative amount of these two kinds of water varies greatly from one kind of rock or sediment to another, even though their porosities may be the same. What happens depends on pore size. If the pores are large, the water in them will exist as drops too heavy for surface tension to hold, and it will drain away; but if the pores are small enough, the water in them will exist as thin films, too light to overcome the force of surface tension holding them in place; then the water will be firmly held.

  托福考试栏目为您推荐:

  2017年托福考试报名时间

  2017托福听力考试词汇汇总

  托福作文考试零基础备考常识汇总

  2017年9月托福高频词汇表

  2017年托福考试时间安排表

  2017年托福考试成绩查询入口

  托福听力 | 托福词汇 | 托福阅读 | 托福口语 | 托福真题

  想了解更多托福阅读网的资讯,请访问: 托福阅读

本文来源:https://toefl.liuxue86.com/t/3411634.html
延伸阅读
托福阅读文章都比较长,所以在安排时间的时候需要有更多的考虑,那么接下来就和出国留学网来看看托福阅读时间安排及速度提高技巧。时间安排首先介绍下托福阅读时间安排,阅读考试总时长60分钟
2020-07-06
对于托福阅读,备考的考生对此有哪些了解呢?需要分内容和板块进行准备。接下来就和出国留学网一起来看看2020年托福阅读备考指导。备考方法单词:想要做好托福阅读,背托福单词是最基础的。
2020-06-16
因为考试时间有限,托福阅读速度提升是考生要考虑的问题之一,如何提升托福阅读速度呢?需要考托福的同学和出国留学网小编一起来看看托福阅读考试速度怎么训练?考试速度1.多做真题,模拟训练
2020-06-06
托福阅读题型以及算分详解,希望这篇文章对于大家在进行托福阅读备考的时候有帮助,下面就好出国留学网一起来看看托福阅读考试有哪些常考题型?2020年托福阅读考试需要完成3篇文章,每篇文
2020-05-27
对于托福阅读,想获得高分,那么了解一些做题技巧是免不了的,接下来就和出国留学网的小编来了解一下2020年托福阅读考试满分答题技巧分享。做题的误区考生做旧托福考试(TOEFL)阅读或
2020-05-27
阅读不仅在英语考试中是重点,在中文考试中同样占比很重。其实阅读在我们生活中无处不在。但是托福阅读好像要难上些许,我们出国留学网给大家分析了一些托福阅读考点,来跟我们看看吧。一、例证
2019-06-10
托福阅读如此重要,很多人不知道怎么分配时间,那么托福阅读时间该怎么分配呢?想必是不少出国人士比较关心的问题,和出国留学网一起来看看怎样分配托福阅读时间?1.单篇阅读文章定格20分钟
2019-05-30
在托福阅读时,审题在考试中是非常重要的,那么接下来就和出国留学网一起来看看托福阅读考试审题技巧。对于托福阅读中的细节题,推断题和修辞目的题,审题是非常关键的。如果考生审题不清晰,或
2019-06-20
阅读在托福考试中所占的比重非常大,只有在阅读中拿高分,才能在托福中表现优异。今天就跟着出国留学网一起来看看托福阅读考试拿高分技巧。在托福阅读考试中,对于阅读速度不高,英语水平中等或
2019-05-07
想要提升自己的托福口语阅读的速度,需要解决自己的一些问题,那么接下来就和出国留学网一起来看看如何提升托福阅读答题速度?(1)主题段和主题句的关键词。托福文章中的主题段和主题句都是参
2019-06-24